Preview

Medical Herald of the South of Russia

Advanced search

The role of cytokines in bone remodeling and the pathogenesis of postmenopausal osteoporosis

https://doi.org/10.21886/2219-8075-2020-11-2-6-18

Abstract

About 20 years ago osteoimmunology was identified as new field of scientific knowledge. It studies patterns of immune and bone system interactions in normal and pathological conditions. The osteoimmunology achievements have fundamentally changed our ideas about the pathogenesis of human skeleton diseases, including osteoporosis. This review presents cytokines key role in physiological and pathological bone remodeling. The issues of interaction between cytokines, osteoblasts and osteoclasts are described in detail. The crucial role of proinflammatory cytokines increased production by immunocompetent cells in the postmenopausal osteoporosis development has been characterized. Pubmed, Scopus, Web of Science, MedLine, eLIBRARY.RU databases were used for systematic literature search.

About the Authors

G. A. Ignatenko
M. Gorky Donetsk National Medical University
Ukraine

Grigory A. Ignatenko, Dr. Sci. (Med.), Professor, head of the Department of propaedeutic and internal medicine

Donetsk, DPR



I. G. Nemsadze
M. Gorky Donetsk National Medical University
Ukraine

Ilona G. Nemsadze, Assistant of the Department of Obstetrics and Gynecology

Donetsk, DPR



E. D. Mirovich
M. Gorky Donetsk National Medical University
Ukraine

Evgeny D. Mirovich, Dr. Sci. (Med.), Professor of the Department of Obstetrics and Gynecology

Donetsk, DPR



A. V. Churilov
M. Gorky Donetsk National Medical University
Ukraine

Andrey V. Churilov, Dr. Sci. (Med.), Professor, head of the Department of Obstetrics and Gynecology

Donetsk, DPR



E. A. Maylyan
M. Gorky Donetsk National Medical University
Ukraine

Edward A. Maylyan, Dr. Sci. (Med.), Professor, Department of Clinical Immunology, Allergology and Endocrinology

Donetsk, DPR



I. S. Glazkov
Simferopol Clinical Maternity Hospital № 2
Russian Federation

Ilya S. Glazkov, Dr. Sci. (Med.), Head of the Simferopol Clinical Maternity Hospital No. 2

Simferopol



Z. S. Rumyantceva
S.I. Georgievsky Medical Academy named after
Russian Federation

Zoya S. Rumyantseva, Cand. Sci. (Med.), associate Professor, head of the Department of Obstetrics, Gynecology and Perinatology No. 1 of S.I. Georgievsky Medical Academy, Vernadsky CFU

Simferopol



References

1. Horton JE, Raisz LG, Simmons HA, Oppenheim JJ, Mergenhagen SE. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science. 1972;177:793-795. https://doi.org/10.1126/science.177.4051.793

2. Chen X, Wang Z, Duan N, Zhu G, Schwarz EM, Xie C. Osteoblast-osteoclast interactions. Connect Tissue Res. 2018;59(2):99-107. https://doi.org/10.1080/03008207.2017.1290085

3. Arron JR, Choi Y. Bone versus immune system. Nature. 2000;408:535-536. https://doi.org/10.1038/35046196

4. Ginaldi L, De Martinis M. Osteoimmunology and Beyond. Curr. Med. Chem. 2016;23(33):3754-3774. https://doi.org/10.2174/0929867323666160907162546

5. Liu H, Luo T, Tan J, Li M, Guo J. Osteoimmunology’ Offers New Perspectives for the Treatment of Pathological Bone Loss. Curr Pharm Des. 2017;23(41):6272-6278. https://doi.org/10.2174/1381612823666170511124459

6. Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Front Immunol. 2018;9:657. https://doi.org/10.3389/fimmu.2018.00657

7. Hu L, Yin C, Zhao F, Ali A, Ma J, Qian A. Mesenchymal Stem Cells: Cell Fate Decision to Osteoblast or Adipocyte and Application in Osteoporosis Treatment. Int J Mol Sci. 2018;19(2):360. https://doi.org/10.3390/ijms19020360

8. Chen Q, Shou P, Zheng C, Jiang M, Cao G, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;23(7):1128-1139. https://doi.org/10.1038/cdd.2015.168

9. Guder C, Gravius S, Burger C, Wirtz DC, Schildberg FA. Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System. Front Immunol. 2020;11:58. https://doi.org/10.3389/fimmu.2020.00058

10. Ono T, Takayanagi H. Osteoimmunology in bone fracture healing. Curr Osteoporos Rep. 2017;15(4):367-375. https://doi.org/10.1007/s11914-017-0381-0

11. Gong L, Zhao Y, Zhang Y, Ruan Z. The macrophage polarization regulates MSC osteoblast differentiation in vitro. Ann Clin Lab Sci. 2016;46(1):65-71. PMID: 26927345

12. Han L, Wang B, Wang R, Gong S, Chen G, Xu W. The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res Ther. 2019;10(1):377. https://doi.org/10.1186/s13287-019-1498-0

13. Vallés G, Bensiamar F, Maestro-Paramio L, García-Rey E, Vilaboa N, Saldaña L. Influence of inflammatory conditions provided by macrophages on osteogenic ability of mesenchymal stem cells. Stem Cell Res Ther. 2020;11(1):57. https://doi.org/10.1186/s13287-020-1578-1

14. Povoroznyuk V.V., Reznichenko N.A., Maylyan E.A. Estrogen-associated regulation of the bone tissue remodeling. Reproductive endocrinology. 2014;15(1):14-18. (In Russ.)

15. Maylyan E.A. Vitamin D regulation of bone metabolism. Medical Herald of the South of Russia. 2017;8(1):12-20. (In Russ.). https://doi.org/10.21886/2219-8075-2017-1-12-20

16. Maylyan E.A. The modern ideas about the postmenopausal osteoporosis etiology and pathogenesis. Problems of osteology. 2015;18(2):3-11. (In Russ.)

17. Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;(6):16. https://doi.org/10.1038/s41413-018-0019-6

18. Kenkre JS, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308-327. https://doi.org/10.1177/0004563218759371

19. Yuan FL, Wu QY, Miao ZN, Xu MH, Xu RS, et al. Osteoclast-Derived Extracellular Vesicles: Novel Regulators of Osteoclastogenesis and Osteoclast-Osteoblasts Communication in Bone Remodeling. Front Physiol. 2018;9:628. https://doi.org/10.3389/fphys.2018.00628

20. Matsuoka K, Park KA, Ito M, Ikeda K, Takeshita S. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J Bone Miner Res. 2014;29(7):1522-1530. https://doi.org/10.1002/jbmr.2187

21. Wang L, Liu S, Zhao Y, Liu D, Liu Y, et al. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death Diff er. 2015;22(10):1654-1664. https://doi.org/10.1038/cdd.2015.14

22. Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone. 2017;96:29-37. https://doi.org/10.1016/j.bone.2016.10.007

23. Ota K, Quint P, Ruan M, Pederson L, Westendorf JJ, et al. Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. J Cell Biochem. 2013;114(8):1901-1907. https://doi.org/10.1002/jcb.24537

24. Ignatius A, Schoengraf P, Kreja L, Liedert A, Recknagel S, et al. Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β. J Cell Biochem. 2011;112(9):2594-2605. https://doi.org/10.1002/jcb.23186

25. Meshcheryakova A, Mechtcheriakova D, Pietschmann P. Sphingosine 1-phosphate signaling in bone remodeling: multifaceted roles and therapeutic potential. Expert Opin Ther Targets. 2017;21(7):725-737. https://doi.org/10.1080/14728222.2017.1332180

26. Kim BJ, Lee YS, Lee SY, Baek WY, Choi YJ, et al. Osteoclastsecreted SLIT3 coordinates bone resorption and formation. J Clin Invest. 2018;128(4):1429-1441. https://doi.org/10.1172/JCI91086

27. Kim BJ, Koh JM. Coupling factors involved in preserving bone balance. Cell Mol Life Sci. 2019;76(7):1243-1253. https://doi.org/10.1007/s00018-018-2981-y

28. Povoroznyuk V.V., Reznichenko N.A., Maylyan E.A. Role of immune factors in the pathogenesis of postmenopausal osteoporosis. Problems of osteology. 2013;16(3):3-7. (In Russ.)

29. Weitzmann MN, Pacifi ci R. Estrogen defi ciency and bone loss: an inflammatory tale. J. Clin. Invest. 2006;116(5):1186-1194. https://doi.org/10.1172/JCI28550

30. Ono T, Nakashima T. Recent advances in osteoclast biology. Histochem Cell Biol. 2018;149(4):325-341. https://doi.org/10.1007/s00418-018-1636-2

31. Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Infl amm Regen. 2020;40:2. https://doi.org/10.1186/s41232-019-0111-3

32. Boyce BF, Xiu Y, Li J, Xing L, Yao Z. NF-κB-Mediated Regulation of Osteoclastogenesis. Endocrinol Metab (Seoul). 2015;30(1):35-44. https://doi.org/10.3803/EnM.2015.30.1.35

33. Phetfong J, Sanvoranart T, Nartprayut K, Nimsanor N, Seenprachawong K, et al. Osteoporosis: the current status of mesenchymal stem cell-based therapy. Cell Mol Biol Lett. 2016;21:12. https://doi.org/10.1186/s11658-016-0013-1

34. Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J. Regulation of Osteoclast Diff erentiation by Cytokine Networks. Immune Netw. 2018;18(1):8. https://doi.org/10.4110/in.2018.18.e8

35. Weitzmann MN. Bone and the Immune System. Toxicol Pathol. 2017;45(7):911-924. https://doi.org/10.1177/0192623317735316

36. Okamoto K, Nakashima T, Shinohara M, ,Negishi-Koga T, Komatsu N. et al. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev. 2017;97(4):1295-1349. https://doi.org/10.1152/physrev.00036.2016

37. Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S. Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. Biomed Res Int. 2020;2020:6910312. https://doi.org/10.1155/2020/6910312

38. Li Y, Toraldo G, Li A, Yang X, Zhang H, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839-3848. https://doi.org/10.1182/blood-2006-07-037994

39. Jung SM, Kim KW, Yang CW, Park SH, Ju JH. Cytokine-mediated bone destruction in rheumatoid arthritis. J Immunol Res. 2014;2014:263625. https://doi.org/10.1155/2014/263625

40. Brincat SD, Borg M, Camilleri G, Calleja-Agius J. The role of cytokines in postmenopausal osteoporosis. Minerva Ginecol. 2014;66(4):391-407. PMID: 25020058

41. Dar HY, Azam Z, Anupam R, Mondal RK, Srivastava RK. Osteoimmunology: The Nexus between bone and immune system. Front Biosci (Landmark Ed). 2018;23:464-492. https://doi.org/10.2741/4600

42. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory Disease. Int J Mol Sci. 2019;20(23):6008. https://doi.org/10.3390/ijms20236008

43. De Martinis M, Sirufo MM, Suppa M, Ginaldi L. IL-33/IL-31 Axis in Osteoporosis. Int J Mol Sci. 2020;21(4):1239. https://doi.org/10.3390/ijms21041239

44. Park-Min KH. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol Life Sci. 2018;75(14):2519-2528. https://doi.org/10.1007/s00018-018-2817-9


Review

For citations:


Ignatenko G.A., Nemsadze I.G., Mirovich E.D., Churilov A.V., Maylyan E.A., Glazkov I.S., Rumyantceva Z.S. The role of cytokines in bone remodeling and the pathogenesis of postmenopausal osteoporosis. Medical Herald of the South of Russia. 2020;11(2):6-18. (In Russ.) https://doi.org/10.21886/2219-8075-2020-11-2-6-18

Views: 4390


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-8075 (Print)
ISSN 2618-7876 (Online)